Operator algebras generated by partial isometries and their adjoints form the basis for some of the most well studied classes of C*-algebras. The Toeplitz algebra is a classic example. The generator $M_z$ on the Hardy space $H^2(\mathbb{T})$ is isometric, and hence, left invertible. Motivated by questions from linear equations in Hilbert spaces (frame theory), we wish to understand particular types of operator algebras generated by left invertible operators.
In this talk, we investigate the norm closed operator algebra generated by a single left invertible operator $T$ in $\mathscr{B}(\mathscr{H})$ with a canonical left inverse (the Moore-Penrose inverse).